Can microbes limit plant growth under elevated CO₂?

Elsa Cleland – Stanford University GCEP End of Summer Workshop - 2003

Global changes alter resource availability for plants

Increased temperatures increases process rates

Model system: Jasper Ridge Global Change Experiment

- Warming, elevated CO₂, N-deposition, increased precipitation
- 16 treatments x 8 reps + 8 controls
- N=136
- ANOVA
- Annual grassland
- 5 years of treatments

Randomized block design

Initial hypotheses:

Hypothesis 1: Interacting global changes will increase resources required for plant growth, thus increasing Net Primary Productivity

Hypothesis 2: Global changes will interact in an additive manner

Surprise: Elevated CO₂ suppressed the stimulatory effects that other global changes had on NPP

T = increased temperature, N = nitrogen deposition, P = increased precipitation

Soil microbes interact with plants, possibly competing for limiting nutrients

Can microbes limit plant growth responses to elevated CO₂ by immobilizing nutrients?

Elevated CO₂ lowers soil labile C (p=0.07) and microbial biomass (p=0.09)

Ambient CO₂

JRGCE Microbial biomass C

N-deposition increases N-availability, but elevated CO₂ has no consistent effect

Generally, there is more N in the microbial than the available pool

Elevated CO₂ consistently lowers the microbial N pool (no significant results)

JRGCE Microbial biomass N

Elevated CO₂ consistently lowers soil available P, (p=0.19)

Microbial P is more variable than soil available P

N-deposition increases microbial uptake of P (p=0.10). Increased precipitation and heat interact to lessen the effect of N-deposition

Elevated CO₂ consistently increases the C:N ratio of microbial biomass, less with multiple global changes

C:P ratios are high overall, but complicated

JRGCE Microbial biomass C:N ratio, April

JRGCE Microbial biomass C:P ratio, average of April and March values

- N-deposition lowers foliar P concentrations, but no other global changes have significant effects

Can microbes limit plant growth responses to elevated CO₂ by immobilizing nutrients?

-We hypothesized:

Can microbes limit plant growth responses to elevated CO₂ by immobilizing nutrients?

-We hypothesized:

- But we found:

• There is less P available under elevated CO₂, but microbial immobilization may not be the cause...

- There is less P available under elevated CO₂, but microbial immobilization may not be the cause
- Litter immobilization of P may be the answer...

- There is less P available under elevated CO₂, but microbial immobilization may not be the cause
- Litter immobilization of P may be the answer...
- What next?

- There is less P available under elevated CO₂, but microbial immobilization may not be the cause
- Litter immobilization of P may be the answer...
- What next?
- Decomposition experiment to address feedbacks

Plant community defined along a functional axis

✓ % N✓ Quality for herbivores✓ decomposition

↑ % N↑ Quality for herbivores↑ decomposition

Plant responses and feedbacks to global change

Physiological responses:

Shifting tissue chemistry

Feedbacks to decomposition and nutrient availability

Plant responses and feedbacks to global change

Decomposition experiment:

Decomposition rate:

mass loss, rate of N &P return to soil

Decomposition

Shifting species composition

microclimate

Decompose material from each plot in place Decompose material in a "common garden", to isolate the effects of shifting tissue chemistry

Decompose a "common substrate" in the plots, to isolate the abiotic effects of globalchanges

Acknowledgements

- Thanks to the DOE GREF Fellowship program for support
- Thanks to NSF, the Mellon Foundation, and the California Native Plant Society for funding the JRGCE research
- Thanks to many collaborators including Chris
 Field, Hal Mooney, Nona Chiariello, Becky Shaw,
 Erika Zavaletta, Hugh Henry and Duncan Menge

